This examination paper consists of THREE sections: Module 1, Module 2 and Module 3.

Each section consists of 2 questions.
The maximum mark for each Module is 50.
The maximum mark for this examination is 150.
This examination consists of 6 printed pages.

INSTRUCTIONS TO CANDIDATES

1. **DO NOT** open this examination paper until instructed to do so.
2. Answer **ALL** questions from the **THREE** sections.
3. Write your solutions, with full working, in the answer booklet provided.
4. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct to three significant figures.

Examination Materials Permitted

Graph paper (provided)
Mathematical formulae and tables (provided) – **Revised 2008**
Mathematical instruments
Silent, non-programmable, electronic calculator
SECTION A (Module 1)

Answer BOTH questions.

1. (a) (i) Determine the values of the real number \(h \) for which the roots of the quadratic equation \(4x^2 - 2hx + (8 - h) = 0 \) are real. [8 marks]

(ii) The roots of the cubic equation

\[x^3 - 15x^2 + px - 105 = 0 \]

are \(5 - k \), \(5 \) and \(5 + k \).

Find the values of the constants \(p \) and \(k \). [7 marks]

(b) (i) Copy the table below and complete by inserting the values for the functions \(f(x) = |x + 2| \) and \(g(x) = 2|x - 1| \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(1)</td>
</tr>
<tr>
<td>(g(x))</td>
<td>(8)</td>
</tr>
<tr>
<td>(-2)</td>
<td>(1)</td>
</tr>
<tr>
<td>(-1)</td>
<td>(3)</td>
</tr>
<tr>
<td>(0)</td>
<td>(6)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>(3)</td>
<td>(2)</td>
</tr>
<tr>
<td>(4)</td>
<td>(2)</td>
</tr>
<tr>
<td>(5)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

[4 marks]

(ii) Using a scale of 1 cm to 1 unit on both axes, draw on the same graph \(f(x) \) and \(g(x) \) for \(-3 \leq x \leq 5\). [4 marks]

(iii) Using the graphs, find the values of \(x \) for which \(f(x) = g(x) \). [2 marks]

Total 25 marks
2. (a) Without using calculators or tables, evaluate

\[\sqrt{\frac{27^{10} + 9^{10}}{27^4 + 9^{11}}} \]

[8 marks]

(b) (i) Prove that \(\log_m n = \frac{\log_{10} m}{\log_{10} n} \), for \(m, n \in \mathbb{N} \).

[4 marks]

(ii) Hence, given that \(y = (\log_2 3) (\log_3 4) (\log_4 5) \ldots (\log_{31} 32) \), calculate the exact value of \(y \).

[6 marks]

(c) Prove, by the principle of mathematical induction, that

\[f(n) = 7^n - 1 \]

is divisible by 6, for all \(n \in \mathbb{N} \).

[7 marks]

Total 25 marks

SECTION B (Module 2)

Answer BOTH questions.

3. (a) Let \(p = i - j \). If \(q = \lambda i + 2j \), find values of \(\lambda \) such that

(i) \(q \) is parallel to \(p \)

[1 mark]

(ii) \(q \) is perpendicular to \(p \)

[2 marks]

(iii) the angle between \(p \) and \(q \) is \(\frac{\pi}{3} \).

[5 marks]

(b) Show that \[\frac{1 - \cos 2A + \sin 2A}{1 + \cos 2A + \sin 2A} = \tan A. \]

[6 marks]

(c) (i) Using the formula for \(\sin A + \sin B \), show that if \(t = 2 \cos \theta \) then \(\sin (n + 1) \theta = t \sin n\theta - \sin (n - 1) \theta \)

[2 marks]

(ii) Hence, show that \(\sin 3\theta = (t^2 - 1) \sin \theta. \)

[2 marks]

(iii) Using (c) (ii) above, or otherwise, find ALL solutions of \(\sin 3\theta = \sin \theta, 0 \leq \theta \leq \pi. \)

[7 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

22134020/CAPE 2008
4. (a) (i) The line $x - 2y + 4 = 0$ cuts the circle, $x^2 + y^2 - 2x - 20y + 51 = 0$ with centre P, at the points A and B.

Find the coordinates of P, A and B. \[6\text{ marks}\]

(ii) The equation of any circle through A and B is of the form

$$x^2 + y^2 - 2x - 20y + 51 + \lambda(x - 2y + 4) = 0$$

where λ is a parameter.

A new circle C with centre Q passes through P, A and B.

Find

a) the value of λ \[2\text{ marks}\]

b) the equation of circle C \[2\text{ marks}\]

c) the distance, $|PQ|$, between the centres \[3\text{ marks}\]

d) the distance $|PM|$ if PQ cuts AB at M. \[4\text{ marks}\]

(b) A curve is given by the parametric equations $x = 2 + 3 \sin t$, $y = 3 + 4 \cos t$.

Show that

(i) the Cartesian equation of the curve is

$$\frac{(x - 2)^2}{9} + \frac{(y - 3)^2}{16} = 1$$

\[3\text{ marks}\]

(ii) every point on the curve lies within or on the circle

$$(x - 2)^2 + (y - 3)^2 = 25.$$ \[5\text{ marks}\]

Total 25 marks
SECTION C (Module 3)

Answer BOTH questions.

5. (a) Use L’Hopital’s rule to obtain \(\lim_{x \to 0} \frac{\sin 4x}{\sin 5x} \). [3 marks]

(b) (i) Given that \(y = \frac{x}{1 - 4x} \),

\[
\begin{align*}
\text{a) } & \quad \text{find } \frac{dy}{dx} \quad \text{[4 marks]} \\
\text{b) } & \quad \text{show that } x^2 \frac{dy}{dx} = y^2. \quad \text{[2 marks]}
\end{align*}
\]

(ii) Hence, or otherwise, show that \(x^2 \frac{d^2y}{dx^2} + 2 (x - y) \frac{dy}{dx} = 0 \). [3 marks]

(c) A rectangular box without a lid is made from thin cardboard. The sides of the base are 2x cm and 3x cm, and its height is h cm. The total surface area of the box is 200 cm².

(i) Show that \(h = \frac{20}{x} \) \(-\frac{3x}{5} \). [4 marks]

(ii) Find the height of the box for which its volume \(V \) cm³ is a maximum. [9 marks]

Total 25 marks
6. (a) Use the substitution $u = 3x^2 + 1$ to find $\int \frac{x \, dx}{\sqrt{3x^2 + 1}}$. [6 marks]

(b) A curve C passes through the point $(3, -1)$ and has gradient $x^2 - 4x + 3$ at the point (x, y) on C.

Find the equation of C. [4 marks]

(c) The figure below (not drawn to scale) shows part of the line $y + 2x = 5$ and part of the curve $y = x(4 - x)$ which meet at A. The line meets Oy at B and the curve cuts Ox at C.

(i) Find the coordinates of A, B and C. [6 marks]

(ii) Hence find the exact value of the area of the shaded region. [9 marks]

Total 25 marks

END OF TEST